APT-MCMC, a C++/Python implementation of Markov Chain Monte Carlo for parameter identification
نویسندگان
چکیده
منابع مشابه
Comparison of two Markov chain Monte Carlo (MCMC) methods
As the world advances, statisticians/mathematicians are being involved into more and more complex surveys for the development of society and human beings. Consequently, these complex survey data requires complicated and high-dimensional models for final analysis. We need sophisticated and efficient statistical/mathematical tools for estimation and prediction of these models. Frequently, we simu...
متن کاملMarkov chain Monte Carlo algorithms for SDE parameter estimation
This chapter considers stochastic differential equations for Systems Biology models derived from the Chemical Langevin Equation (CLE). After outlining the derivation of such models, Bayesian inference for the parameters is considered, based on state-of-the-art Markov chain Monte Carlo algorithms. Starting with a basic scheme for models observed perfectly, but discretely in time, problems with s...
متن کاملA Markov-Chain-Monte-Carlo-Based Method for System Identification
This paper describes a novel methodology for the identification of mechanical systems and structures from vibration response measurements. It combines prior information, observational data and predictive finite element models to produce configurations and system parameter values that are most consistent with the available data and model. Bayesian inference and a Metropolis simulation algorithm ...
متن کاملMarkov Chain Monte Carlo
Markov chain Monte Carlo is an umbrella term for algorithms that use Markov chains to sample from a given probability distribution. This paper is a brief examination of Markov chain Monte Carlo and its usage. We begin by discussing Markov chains and the ergodicity, convergence, and reversibility thereof before proceeding to a short overview of Markov chain Monte Carlo and the use of mixing time...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Chemical Engineering
سال: 2018
ISSN: 0098-1354
DOI: 10.1016/j.compchemeng.2017.11.011